湖北快3全天一期一计划必中

采用机器学习的声音判断系统的制作方法

文档序号:19069026发布日期:2019-11-06 02:50
采用机器学习的声音判断系统的制作方法

本发明涉及计算机技术领域,具体涉及采用机器学习的声音判断系统。



背景技术:

语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别听写机在一些领域的应用被美国新闻界评为计算机发展十件大事之一。很多专家都认为语音识别技术是信息技术领域十大重要的科技发展技术之一。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。现有的语音识别方式在环境静音的条件下比较精准,而环境存在噪音时,则无法有效的对语音进行识别。



技术实现要素:

本发明所要解决的技术问题是现有的语音识别方式在环境静音的条件下比较精准,而环境存在噪音时,则无法有效的对语音进行识别,目的在于提供采用机器学习的声音判断系统,解决上述问题。

本发明通过下述技术方案实现:

采用机器学习的声音判断系统,包括:用于采集用户的语音样本的采集模块;用于对所有的语音样本进行多基频估计的估计模块;用于从多基频估计处理后的语音样本中过滤背景音形成纯净语音样本的过滤模块;用于对纯净语音样本进行SVM学习形成二分器的SVM模块;用于采用二分器对所有的语音进行识别的识别模块。

现有技术中,语音识别方式在环境静音的条件下比较精准,而环境存在噪音时,则无法有效的对语音进行识别。本发明应用时,先采集用户的语音样本,然后对所有的语音样本进行多基频估计,多基频估计处理后的语音被分到多个频域之中,更便于进行过滤处理,再然后从多基频估计处理后的语音样本中过滤背景音形成纯净语音样本,从而使得环境中的噪音被过滤,再然后对纯净语音样本进行SVM学习形成二分器,再然后采用二分器对所有的语音进行识别。本发明通过上述模块,将环境当中的噪音过滤,保证了语音识别的精准性。

进一步的,所述SVM学习采用线性核函数。

湖北快3全天一期一计划必中进一步的,所述过滤模块对多基频估计处理后的语音样本进行FFT并转换为正弦模块,并将属于背景音频率的正弦波去除。

进一步的,所述二分器的结果采用是和否。

进一步的,所述识别模块还用于当二分器的识别结果为是时,将该语音加入用户的语音样本。

本发明与现有技术相比,具有如下的优点和有益效果:

本发明采用机器学习的声音判断系统,通过上述模块,将环境当中的噪音过滤,保证了语音识别的精准性。

附图说明

湖北快3全天一期一计划必中此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:

图1为本发明系统结构示意图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。

实施例

湖北快3全天一期一计划必中如图1所示,本发明采用机器学习的声音判断系统,包括:用于采集用户的语音样本的采集模块;用于对所有的语音样本进行多基频估计的估计模块;用于从多基频估计处理后的语音样本中过滤背景音形成纯净语音样本的过滤模块;用于对纯净语音样本进行SVM学习形成二分器的SVM模块;用于采用二分器对所有的语音进行识别的识别模块。所述SVM学习采用线性核函数。所述过滤模块对多基频估计处理后的语音样本进行FFT并转换为正弦模块,并将属于背景音频率的正弦波去除。所述二分器的结果采用是和否。所述识别模块还用于当二分器的识别结果为是时,将该语音加入用户的语音样本。

本实施例实施时,先采集用户的语音样本,然后对所有的语音样本进行多基频估计,多基频估计处理后的语音被分到多个频域之中,更便于进行过滤处理,再然后从多基频估计处理后的语音样本中过滤背景音形成纯净语音样本,从而使得环境中的噪音被过滤,再然后对纯净语音样本进行SVM学习形成二分器,再然后采用二分器对所有的语音进行识别。本发明通过上述模块,将环境当中的噪音过滤,保证了语音识别的精准性。

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1